% Meta informations:
\newcommand{\trauthor}{Vincent Dahmen}
\newcommand{\trtype}{Spottalk} %{Proseminar} %{Seminar} %{Workshop}
-\newcommand{\trcourse}{Evaluating domain control mechanism on NMT using real life data sets}
-\newcommand{\trtitle}{Evaluating domain control mechanism on NMT using real life data sets}
+\newcommand{\trcourse}{Evaluating a domain control mechanism on NMT using real life data sets}
+\newcommand{\trtitle}{Evaluating a domain control mechanism on NMT using real life data sets}
\newcommand{\trmatrikelnummer}{6689845}
\newcommand{\tremail}{4dahmen@informatik.uni-hamburg.de}
\newcommand{\trinstitute}{Dept. Informatik -- Knowledge Technology, WTM}
%\setbeamertemplate{sections/subsections in toc}[sections numbered]
%\beamertemplatenavigationsymbolsempty
\setbeamertemplate{headline}[default] % deaktiviert die Kopfzeile
-%\setbeamertemplate{navigation symbols}{}% deaktiviert Navigationssymbole
+\setbeamertemplate{navigation symbols}{}% deaktiviert Navigationssymbole
%\useinnertheme{rounded}
\usepackage{acronym} % Acronyms
2) multi source translation systems
3) complex attention models
-## Why does it matter?
-- supportive facts are complex to learn
- - even for humans
-- evaluating a working approach with new data is necessary to prove it
-- collecting new datasets allows more precise evaluation of new models
+## Example Styleguide
+\begin{figure}[ht]
+ \centering
+ \includegraphics[scale=0.5]{img/styleguide-example.png}
+\end{figure}
## Research Questions
- How can we transform real life/industry data sets to use in deep learning?
# Experiments and Evaluation
-
+## Experiments and Evaluation
### Experiment
- Train a neuronal net on multiple data sets using BPE and a fixed vocabulary
- Reduced dataset
### Evaluation
- BLEU
- automated annotaion system by Sennrich
-- for industry data: distance to same translation of other category (if avaialble)
+- for industry data: distance to same translation of other category
+
+## Model: FSMT
+\begin{figure}[ht]
+ \includegraphics[scale=0.8]{img/model-overview.png}
+\end{figure}
# Time Plan
## Time Plan
-- Provide a sketch of your thesis schedule
-- Identify reasonable time-slots for writing, experiments and implementation
+- Month 1: Prepare the data
+- Month 2: Implement the RNN
+- Month 3: Train the models
+- Month 4: Experiment with the models
+- Month 5: Write the thesis
# Contribution
## Contribution
-- What would be the novelty in your approach
-- What would be your contribution to the group?
+- supportive facts are complex to learn
+ - even for humans
+- evaluating a working approach with new data is necessary to prove it
+- collecting new datasets allows more precise evaluation of new models